Hidden quantum gravity in 4d Feynman diagrams: Emergence of spin foams


We show how Feynman amplitudes of standard QFT on flat and homogeneous space can naturally be recast as the evaluation of observables for a specific spin foam model, which provides dynamics for the background geometry. We identify the symmetries of this Feynman graph spin foam model and give the gauge-fixing prescriptions. We also show that the gauge-fixed partition function is invariant under Pachner moves of the triangulation, and thus defines an invariant of four-dimensional manifolds. Finally, we investigate the algebraic structure of the model, and discuss its relation with a quantization of 4d gravity in the limit where the Newton constant goes to zero.

Classical and Quantum Gravity 24, 2027-2060
Aristide Baratin
Aristide Baratin
PhD Candidate