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Abstract

In this article, we report2 our work on the Kaggle Challenge: Flavours of Physics:
Finding τ− → µ+µ−µ−. The main goal of this challenge is to develop powerful
classifiers for the detection of ‘new physics’ – specifically, violation the lepton
flavour conservation guaranteed by the standard model – in the Large Hadron
Collider (LHC). We build several models for the challenge, which include boosted
decision trees and neural networks, and report our findings on their performance.
We include a cautionary tale of how the use of some specific features of the data
can dramatically impact the physical relevance of the results.

1 Introduction

1.1 New physics in the LHC

The standard model for particle physics, which results from decades of collaboration between the 30s
and the end of the 70s, provides a complete and remarkably accurate description of matter particles
and their interactions at microscopic scales Ramond (1999). The model is still undefeated after years
of intense experimentation in the successive generations of particle colliders. The latest success to
date is the experimental discovery in 2012 in the LHC of the Higgs boson, introduced in the standard
model in 1964.

However despite any major conflict with experiments so far, physicists have good reasons to believe
that the standard model is not the end of the story. It does not explain neutrino oscillations, dark matter,
nor takes into account the gravitational interaction. One of the main challenges in experimental
particle physics has been to detect signals of new physics - i.e phenomena that would conflict with
the rules of standard model. The τ− → µ+µ−µ− phenomenon is one such case, and this is the
subject of the challenge. It violates a rule of the standard model: the conservation of a physical
quantity called the lepton flavour – the number of electrons and electron-neutrinos, muons and
muon-neutrinos, and tau and tau-neutrinos. Interestingly, in many proposed extensions of the standard
model, this conservation law is absent, so that decays such as τ− → µ+µ−µ− are possible. Hence
the observation of such event would be a clear sign of new physics beyond the standard model.

1.2 Why machine learning?

The outcome of an experiment searching for signals of a new phenomenon results from a binary
classification task: to disentangle the signal from ordinary physics ‘background’. More precisely, the
eventual goal is to discriminate between two hypothesis:

background only V.S signal + background

A major difficulty in the case of events such as the τ− → µ+µ−µ− decay, where a single particle
splits into three, is that they are rare – that is, even in a context where lepton flavour is allowed, the

∗Equal contribution.
2Our code source can be found in https://github.com/ArisBar/IFT-6390-project
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Figure 1: Decay violating lepton flavour symmetry of the standard model

Figure 2: Particles of the Standard Model.

decay occurs with extremely low probability. This means the ratio background/signal is extremely
high. In this context the optimization of machine learning algorithms to obtain powerful discriminators
is crucial, and has a direct impact on the quality of the results.

1.3 Outline

The rest of the report is structured as follows: In Section 2, we further describe the nature of the data
as well the evaluation metric provided for the challenge. In Section 3, we present our first results,
with the baseline algorithms we have developed for this data. In Section 4, we point out a subtlety
with the simulated data, which raises the question of the physical interpretability of the results. We
discuss additional tests that came along with the challenge, whose purpose is precisely to circumvent
this problem. Finally in Section 5, taking into account these new constraints, we propose a new
approach using deep learning techniques, which allows us to obtain a very good performance while
arguably remaining physically sound.

2 The data

2.1 Real vs simulated data

The dataset is a labeled dataset (the label being 1 for signal and 0 for background events), which
contains both Monte-Carlo simulated signal data and real background data from the LHCb. The
reason why the whole dataset is not simulated is the lack of the computing power needed to produce
the enormous amount of background samples required to model the event. A major difficulty arises
from such a mixing of real and simulated data: a classifier could learn the imperfections of the
simulation instead of actually discriminating signal and background. We will come back to this point
in Section 4.

2.2 Features

The dataset consists of 67553 rows, with 45 usable features. It is essentially a binary classification
problem, with additional constraints, and 61.7% of the datapoints given correspond to simulated
signal data.
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Table 1: Details about the dataset.

Number of rows: 67553
Columns (including id): 51
Columns useful at test time: 45
Ratio of +ve examples to total: 0.617

A first step for us has been to clean the data (removing the features that should not be used for
training or imposing constraints on others, as recommended by the challenge team) and to gain an
understanding of the features of the dataset. These include two main categories of features:

• Kinematical features such as the energy and momenta of the outgoing muon particles,
expressed in a suitable coordinate system.

• Geometrical features such as the impact parameter and various angles characterizing the
trajectory of the τ particle, as well isolation variables, explained in Chrzaszcz et al. (2015).

Its important to emphasize that the only ‘observed’ particles in the process are the three outgoing
muon particles. The tau particle shows up as an intermediate process, as a result of a proton collision;
it is thus never directly observed and its properties can only be inferred from the actual observations.
In fact, using elementary notions of special relativity such as for example the conservation of total
energy-momenta for the event,

pτ =

3∑
i=1

pµi

additional features for the tau candidate can be calculated and possibly added to the dataset. We thus
created 7 new features including the reconstructed momenta, speed, energy and mass of the τ particle.
We added those features in the file features.py of our source code.

2.3 Evaluation

The evaluation metric for this challenge is a weighted Area-Under-Curve (AUC), for the receiver
operating characteristic (ROC). The ROC curve is obtained by adjusting the threshold on the output
of the model. A high threshold results in a low False Positive Rate (FPR), and a low threshold gives a
True Positive Rate (TPR). Plotting several values at different thresholds, we get a graph much like the
one below3.

Figure 3: Left: Comparing ROC curves, Right: weighted ROC evaluation metric.

The slight difference in this metric from the standard AUC is that it is weighted differently at different
bands, which were chosen to match the evaluation methodology used by CERN scientists.

3Courtesy of http://gim.unmc.edu/dxtests/roc3.htm
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3 First results

We present our first set of algorithms: as baseline algorithms, we have implemented a naive Bayes
classifer and a decision tree. We then moved to boosted trees implemented with Adaboost. All
models have been implemented using the library scikit-learn. In Section 5 we will present results
obtained with neural networks.

Throughout this section we trained and tested our models using k-fold cross-validation using k = 5
equal sized subsamples4. We present the results obtained on the original dataset, with no additional
features.

3.1 Bayes classifiers

As first baseline algorithm, we implemented a Gaussian naive Bayes classifier. The naive Bayes
classifier is a very simple algorithm that assumes features as independent given the class and that
no hidden or latent variables influence the prediction process John and Langley (1995). Despite its
simplicity, it can be in practice very successful and competitive with more sophisticated classifiers
Rish (2001). In this case, using the Gaussian naive Bayes method, the values for each of the features
are assumed normally distributed within each class. The parameters for these Gaussian distributions
are as such learned by the model.

For the validation, we obtain an AUC of 0.9613.

3.2 Decision Tree Classifier

Our second baseline algorithm is a decision tree. Decision tree classifiers are commonly used as an
alternative to artificial neural networks in particle identification. They aim to model the classification
problem as a system of leaves and nodes where each leaf represents a targeted class given the path
from the root to the said leaf.

In a more detailed way, given a splitting value for a variable, the set of events are split in two parts
according to the splitting value. The selected variable and splitting value is chosen as to give the
best separation between the two classes and is defined as a node. The initial set of events is now
split into two branches. Each branch will now be treated as a new set of events where the process of
selecting a splitting value and a variable will occur leading to more nodes and more branches. One
can keep these steps of splitting until the set of events is of a single class, pure. Other stopping criteria
can be added. When the set of events reaches these one of these criteria it will be automatically
established as a leaf. Some of these stopping criteria are the maximum allowed depth of the built tree,
the minimal amount of events in a set and the target purity for a set Roe et al. (2005).

Figure 4: Plot of the cross validation error against the max-depth of the decision tree.

4Note that, although we did not do this, in principle we should have also extracted a subset of the data
beforehand allowing us to compare the performance of all our models, including the neural networks of Section
5, on the same test set, in an unbiased fashion.
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Following the validation as shown in figure 3, we obtain an AUC of 0.9725 for the best hyper-
parameter value of: 6 for the maximum depth.

3.3 Boosted Trees

Boosting methods enable the reduction of bias by taking a set of weak classifiers and building a
strong classifier. In this case, the set of weak classifier is a set of very shallow decision tree classifiers
called stumps and are obtained by limiting the maximum depth stopping criteria to a very low value.

During the selection of the splitting value and variable, every event are considered equal and it is
desired to maximize the purity of each branch according to the split. However, in weighted events,
not all of the events are considered of equal value so the selection of splitting value and variable
is influenced by the weights.The first step of the boosting method is creating a weak tree classifier
and identify miss-classified samples out of the training set where all the events are weighted equally.
The second step, is to again create a weak tree classifier while this time giving more weight to the
miss-classified samples of the previous classifier. The resulting classifier after to steps is a weighted
average of the two classifiers. Trees are then added sequentially by increasing the weights of the
miss-classified events after each step Roe et al. (2005).

In the AdaBoost algorithm, the weight of a tree Tm is given by αm and computed as follow.

errm =

∑N
i=1 wiI(yi 6= Tm(xi))∑N

i=1 wi

αm = ln(
1− errm
errm

)

(1)

The weights of each event wi is then adjusted.

wi ← wi ∗ eαmI(yi 6=Tm(xi)) (2)

The resulting class for each event xi is given by T (xi).

T (xi) =

Ntree∑
m=1

αmTm(xi) (3)

Following the validation error against the number of trees, for various (small) values of the maximum
depth as shown in figure 3.3, we obtain an AUC of 0.9872 for the best hyper-parameter value of: 2
for the maximum depth and 83 for the number of trees.

Figure 5: Cross validation error against the number of trees for different values of the depth.

We now move to a discussion of additional requirements that our classifiers must satisfy to be
physically sound.
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Figure 6: The gap represented here between the blue regions is an artefact of using real data mixed
with simulated data in only specific regions.

4 Simulation Artifacts

As mentioned above, the amount of background data involved in such rare events is too large (in
the sense that the probability distribution of the background events has too large variance) to be
simulated. So real data is used instead. Now, real data may contain signal: in this case signal data
may be mixed in and incorrectly labeled as background. To avoid this, the background data has
been purposely chosen in a mass (or energy) range where the τ− → µ+µ−µ− cannot happen. The
resulting distribution of data in terms of the mass is shown in Figure 6. We see a clear gap between
the simulated signal (in red) and the real background data (in blue). This means the mass (or energy)
of the event, which is also the mass of the reconstructed τ particle, can serve as perfect discriminator
between signal and background. However this gap being a pure artifact of the dataset construction, a
classifier that would take advantage of it would be useless for physics.

Thus an important requirement for a physically relevant classifier is that the result must not be
correlated with mass (in particular this means the tau mass reconstructed feature should of course not
be used). To ensure this, an additional test has been designed by the organizers5:

Correlation test This test measures the correlation of the model output with the mass using
a Cramer-von-Mises (CVM) test. Since the model should not be relying on this feature, a low
correlation score is good. The threshold for CVM is < 0.002.

More generally, we need to make sure that the classifier does not pick features that are not perfectly
modeled in the simulation which would artificially boost its performance – still at the price of physical
relevance. The following ‘agreement test’ checks on a specific control channel - an easily simulated
event similar in mass and topology to τ− → µ+µ−µ− – that the classifier does not have a large
discrepancy when applied to data and to simulation:

Agreement test This test uses the Kolmogorov-Smirnov test to compare the distributions given
by he classifier on a purely simulated and a real data for the control channel. A similar distribution
gives a lower score, which in turn means that the classifier is not exploiting simulation artifacts. The
threshold for KS is < 0.09.

The results for our classifiers (with no additional feature) are shown in table 2. Naive Bayes and
the single decision trees being weak classifiers, it is not surprising that they pass the two tests. We
see that our boosted classifier achieves a high score without correlating with the mass (which shows
in passing that the mass is manifestly a hard feature to learn). However, it fails the agreement test
indicating a dependency on the simulation artifacts.

In the following section we use deep learning techniques to tentatively build a very strong classifier
that would not pick up on artifacts of the simulation and be useful for physics.

5It seems that this test can easily be hacked, as several top ranked participants to the competition realized,
see https://www.kaggle.com/vicensgaitan/flavours-of-physics/clipping-spreading
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Table 2: Correlation and Agreement test results

Naive Bayes Decision Tree Adaboost
AUC score 0.9613 0.9725 0.9872
Correlation Test (CvM) 0.0010 (pass) 0.0011 (pass) 0.0008 (pass)
Agreement Test (KS) 0.0307 (pass) 0.0355 (pass) 0.0907 (fail)

5 Deep Learning Approach

Our deep learning solution consists of a relatively standard three hidden layer neural network with the
RELU activation (Glorot et al., 2011). We use layer normalization on all layers (Lei Ba et al., 2016).
We also use dropout (Hinton et al., 2012) on the first two hidden layers where we drop roughly 10%
of the hidden units. This is smaller than the more conventional rate of 50%. In our first hidden layer
we use 75 units, in our second hidden layer we use 50 units, and in our third hidden layer we use 25
hidden units. We implemented our solution using the Theano framework (Al-Rfou et al., 2016).

The model is evaluated in terms of AUC as well as passing the agreement and correlation tests. AUC
and the other tests are all defined over the entire dataset and are not well defined for a single example.
However, it is known that training deep networks with current methods works best when using small
batch sizes as deep neural networks trained with large batches or full gradient descent tend to have
very bad generalization error (Keskar et al., 2016), which cannot be solely attributed to variance
reduction (Alain et al., 2015). Additionally, the best results with Deep Learning have been achieved
using gradient descent, which (if done exactly) requires that the loss be differentiable. Even for
full gradient descent, the AUC is discrete and not differentiable, though there is some research on
differentiable approximations to AUC (Herschtal and Raskutti, 2004).

Our solution to this issue is to first train a deep neural network using minibatch SGD with small
batches while optimizing for cross-entropy (a standard classifier loss). Then we use a non-gradient
optimization algorithm over the entire dataset to optimize for the full objective, while using the
weights from the first phase as an initial solution. The specific non-gradient optimization algorithm
that we use is the Powell Search Method (Powell, 1964). An interesting alternative might involve
using a learned discriminator keep the training and testing characteristics aligned, rather than simply
using the network resulting from the second stage (Lamb et al., 2016; Ganin and Lempitsky, 2014).
This could improve generalization or improve scaling to problems where the Powell Search Method
cannot not be applied to the entire dataset.

We note that, because our algorithm relies on optimization over the entire dataset in the second stage,
it is not scalable to datasets with a large number of examples. Because our dataset was small enough
to iterate over many times (and fit into memory) we did not consider stochastic optimization for
our second stage algorithm. Our second stage loss has three terms: AUC, KS-test, and CVM-test.
Efficient stochastic optimization of AUC has been thoroughly studied in the literature (Gao et al.,
2013; Ding et al., 2016; Ying et al., 2016). Creating algorithms that also stochastically optimize for
compliance with the KS-test and CVM-test would be an interesting area for future work.

Note that we use an ensemble of ten such neural networks, trained completely independently but with
different random number seeds to achieve our final result of 0.99435 AUC on our own validation set.
This would achieve 10th place on the official Kaggle leaderboard.
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